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Abstract

The purpose of the present paper is to propose a new hybrid method investigating the effect of the surface curvature of a solid body on
hyperbolic heat conduction. The difficulty encountered in the numerical solutions of hyperbolic heat conduction problems is the numer-
ical oscillation in vicinity of sharp discontinuities. In the present study, we have developed a new hybrid method combined the Laplace
transform, the weighting function scheme [Shong-leih Lee, Weighting function scheme and its application on multidimensional conser-
vation equations, Int. J. Heat Mass Transfer 32 (1989) 2065–2073], and the hyperbolic shape function for solving time dependent hyper-
bolic heat conduction equation with a conservation term. Four different examples have been analyzed by the present method. It is found
from these examples that the present method is in good agreement in the analytical solutions [Tsai-tse Kao, Non-Fourier heat conduction
in thin surface layers, J. Heat Transfer 99 (May) (1977) 343–345] and does not exhibit numerical oscillations at the wave front and the
surface temperature is modified by the surface curvature during the short period when the non-Fourier effect is significant. The curvature
will increase or decrease the temperature of the wave front, depending on whether the surface is concave or convex.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decades, study of the hyperbolic heat conduc-
tion equation has received considerable interest, because of
it wide applicability in engineering applications, such as
laser-aided material processing, cryogenic engineering, the
high-intensity electromagnetic irradiation of a solid and
the high-rate heat transfer in rarefied media. The solutions
of the hyperbolic heat conduction can be found in a num-
ber of publications, such as one-dimensional given by
[2–13] and two-dimensional solutions given by [14–16].
Baumeiser and Hamill [2], Taitel [3], Ozisik and Vick [4],
and Wu [5] obtained an analytical solution of one-dimen-
sional HHC, for a semi-infinite medium or in a finite med-
ium with convection, or radiation at the wall surface. Carey
and Tai [6] applied the central and backward difference
schemes to examine the oscillation of numerical solution
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at the reflected boundary. To remedy the numerical diffi-
culty encountered, many numerical schemes such as the
predictor-corrector scheme [7], the transfinite element
formulation [8], the technique based on the Galerkin finite
element and mixed implicit-explicit scheme [9], the charac-
teristic method [10], and the hybrid scheme [11] have been
proposed. Glass et al. [12] and Yeung and Tung [13] stud-
ied the effect of the surface radiation on thermal wave
propagation in a one-dimensional slab.

The objective of the present study is to propose a new
hybrid method investigating the influence of the surface
curvature of a solid body on hyperbolic heat conduction.
The present method combine the Laplace transform,
weighting function scheme, and the hyperbolic shape func-
tion for solving time dependent hyperbolic heat conduction
equation with a conservation term. The Laplace transfer
method is used to remove the time-dependent terms from
the governing equation, and then the discretized expression
of the transformed equation is given by the weighting func-
tion scheme and the hyperbolic shape function. It is found
from four examples that the present method is in good
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Nomenclature

C propagation velocity of thermal wave
cp specific heat
Er dimensionless radiation parameter asra4f 3

r

k4c4

fr reference heat flux
k thermal conductivity
q heat flux
R the average radius of curvature at x = 0,

y = 0
R1,R2 the principal radii of curvature at x = 0, y = 0
s Laplace transform parameter
T temperature
T0 surrounding temperature
Wf(z) weighting function, z

1�e�z

z parameter of the weighting function
x,y,z coordinators

Greek symbols

a thermal diffusivity, k
qcp

as surface absorptivity

c c ¼ o21
ox2 þ o21

oy2

� �
x¼0;y¼0

¼ � 1
R1
þ 1

R2

� �
g dimensionless length, c1

2a
h dimensionless temperature, ðT�T 0Þkc

afr

h
_

the previously calculated surface temperature
q density
r Stefan–Boltzmann constant
B length, z � f(x,y)
n dimensionless time, c2t

2a

Superscript

– the Laplace transform
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agreement in the analytical solutions [1] and does not exhi-
bit numerical oscillations at the wave front and the surface
temperature is modified by the surface curvature during the
short period when the non-Fourier effect is significant.

2. Analysis

Consider a coordinate system, as shown as in Fig. 1. The
x–y plane forms a tangential plane at the surface point of
interest. The surface of the body can be described by an
equation of the form z = f(x,y). The hyperbolic heat con-
duction equation is given by

1

C2

o2T
ot2
þ 1

a
oT
ot
¼ o2T

ox2
þ o2T

oy2
þ o2T

oz2
ð1Þ

Let us introduce a new independent variable B = z � f(x,y)
and neglect terms of order ðdR Þ

2, where d is the heat penetra-
tion length and R is the average radius of curvature at
x = 0, y = 0. The equation at x = 0 and y = 0 is given by

1

C2

o
2T
ot2
þ 1

a
oT
ot
¼ o

2T
o12
þ c

oT
1

ð2Þ

where

c ¼ o
21

ox2
þ o

21
oy2

� �
x¼0;y¼0

¼ � 1

R1

þ 1

R2

� �
ð3Þ
Fig. 1. Coordinate system.
R1 and R2 are the principal radii of curvature at x = 0,
y = 0.

For convenience of numerical analysis, let us define by
the following dimensionless variables:

n ¼ C2t
2a

ð4Þ

g ¼ C1
2a

ð5Þ

hðg; nÞ ¼ kCðT � T 0Þ
afr

ð6Þ

Qðg; nÞ ¼ q
fr

ð7Þ

The resulting equation becomes

o
2h

on2
þ 2

oh
on
¼ o

2h

o
2g
þ e

oh
og

ð8Þ

where

e ¼ 2ca
C

ð9Þ
3. Numerical scheme

To remove the n-dependent terms, taking the Laplace
transform of Eq. (8) with respect to n gives

d2�h
dg2
þ e

d�h
dg
� ðs2 þ 2sÞ�h ¼ 0 ð10Þ

Consider a homogeneous second-order ordinary differen-
tial of the form

h00 þ ah0 � k2h ¼ 0 ð11Þ
Combining the weighting function scheme and hyper-

bolic shape function, the resulting discretized form is given

ðh00 þ ah0 � k2hÞi ¼ aW hi�1 þ aP hi þ aEhiþ1 ð12Þ
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where

aW ¼
kW ð�zi�1Þ

Dxi�1 sinhðkDxi�1Þ
ð13Þ

aE ¼
kW ðziÞ

Dxi sinhðkDxiÞ
ð14Þ

aP ¼ �aW � aE þ
2kðcoshðkDxiÞ � 1Þ

Dxi sinhðkDxiÞ
ð15Þ

and

W ðzÞ ¼ z
1� e�z

ð16Þ

zi ¼ aiþ1
2
Dxi ð17Þ

Using these Eqs. (12)–(17) for Eq. (10) leads to the discret-
ized expression of Eq. (10) as

aW hi�1 þ aPhi þ aEhiþ1 ¼ 0 ð18Þ

aW ¼
ðs2 þ 2sÞ

1
2W ð�zi�1Þ

Dxi�1 sinh ðs2 þ 2sÞ
1
2Dxi�1

h i ð19Þ

aE ¼
ðs2 þ 2sÞ

1
2W ðziÞ

Dxi sinh ðs2 þ 2sÞ
1
2Dxi

h i ð20Þ

aP ¼ �aW � aE þ
2ðs2 þ 2sÞ

1
2fcosh½ðs2 þ 2sÞ

1
2Dxi� � 1g

Dxi sinh ðs2 þ 2sÞ
1
2Dxi

h i ð21Þ

zi ¼ eDxi ð22Þ
Table 1
Comparison of the present method and analytical solution resulting from a p

x Present method

e = �0.1 e = 0.0 e = 0.1

t = 0.5

0.0 1.000000 1.000000 1.00000
0.1 0.924486 0.919913 0.91528
0.2 0.848567 0.840177 0.83176
0.3 0.772592 0.761140 0.74975
0.4 0.696914 0.683146 0.66958
0.5 0.310868 0.303265 0.29570
0.6 0.000000 0.000000 0.00000
0.7 0.000000 0.000000 0.00000
0.8 0.000000 0.000000 0.00000
0.9 0.000000 0.000000 0.00000
1.0 0.000000 0.000000 0.00000

t = 1.0

0.0 1.000000 1.000000 1.00000
0.1 0.937279 0.932676 0.92795
0.2 0.874187 0.865609 0.85687
0.3 0.810980 0.799056 0.78701
0.4 0.747915 0.733268 0.71858
0.5 0.685251 0.668492 0.65183
0.6 0.623244 0.604968 0.58694
0.7 0.562146 0.542929 0.52414
0.8 0.502205 0.482597 0.46359
0.9 0.443659 0.424181 0.40547
1.0 0.193172 0.183940 0.17478
1.1 0.000000 0.000000 0.00000
1.2 0.000000 0.000000 0.00000
The rearrangement of Eqs. (18)–(22) in conjunction with
the boundary conditions can yield the following matrix
system

½K�f�hg ¼ ff g ð23Þ

The nodal dimensionless temperature hi can be determined
by using the application of the Gaussian elimination algo-
rithm and the numerical inversion of the Laplace transform
technique [17].

4. Results and discussion

Example 1. Prescribed wall temperature. The initial and
boundary conditions for this case are given by

hðg; 0Þ ¼ 0;
oh
on
ðg; 0Þ ¼ 0 ð24Þ

hð0; nÞ ¼ 1; hðg!1; nÞ ¼ 0 ð25Þ

The analytical solution [1] of this example is expressed as

hðg;nÞ¼ e
�g
2e e�gþ 1� e2

4

� �1
2

g
Z n

g
e�s

I1 ð1� e2

4
Þðs2�g2Þ

h i1
2

� �
ðs2�g2Þ

1
2

ds

8>><
>>:

9>>=
>>;Uðn�gÞ

ð26Þ

Table 1 lists the comparison of the present method solu-
tions by Dg = 0.025 and analytical solutions for the prob-
lem at t = 0.5 and t = 1.0. From Table 1, it is seen that
rescribed wall temperature

Analytic solution Eq. (26)

e = �0.1 e = 0.0 e = 0.1

0 1.000000 1.000000 1.000000
7 0.924486 0.919913 0.915287
4 0.848566 0.840177 0.831763
8 0.772591 0.761140 0.749758
7 0.696914 0.683146 0.669587
7 0.310943 0.303265 0.295778
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000

0 1.000000 1.000000 1.000000
3 0.937279 0.932676 0.927952
7 0.874186 0.865609 0.856876
1 0.810978 0.799056 0.787010
9 0.747914 0.733268 0.718587
1 0.685250 0.668492 0.651830
9 0.623243 0.604968 0.586948
2 0.562145 0.542929 0.524141
3 0.502204 0.482597 0.463592
4 0.443660 0.424179 0.405469
9 0.193370 0.183940 0.174969
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000



Fig. 2. The influence of the surface curvature of a solid body on
hyperbolic heat conduction problem with a prescribed wall temperature by
Dg = 0.025 at t = 0.5, t = 1.0, t = 1.5 and t = 2.0.

T.-M. Chen / International Journal of Heat and Mass Transfer 50 (2007) 4424–4429 4427
the present method solutions are in agreement with the
analytical solution using the Eq. (26). Fig. 2 shows the
influence of the surface curvature of a solid body on hyper-
bolic heat conduction problem with a prescribed wall tem-
perature by Dg = 0.025 at t = 0.5, t = 1.0, t = 1.5, and
t = 2.0. The curvature will increase or decrease the temper-
ature of the wave front, depending on whether the surface
is concave or convex.
Table 2
Comparison of the present method solutions and analytical solutions resulting

x Present method

e = �0.1 e = 0.0 e = 0.1

t = 0.5

0.0 1.471635 1.446491 1.42162
0.1 1.277607 1.252940 1.22855
0.2 1.095597 1.072261 1.04925
0.3 0.925646 0.904386 0.88348
0.5 0.311089 0.303265 0.29517
0.6 0.000000 0.000000 0.00000
0.7 0.000000 0.000000 0.00000
0.8 0.000000 0.000000 0.00000
0.9 0.000000 0.000000 0.00000
1.0 0.000000 0.000000 0.00000

t = 1.0

0.0 1.863602 1.813100 1.76355
0.1 1.668825 1.618795 1.56974
0.2 1.484548 1.435864 1.38820
0.3 1.310795 1.264251 1.21878
0.4 1.147647 1.103865 1.06121
0.5 0.995030 0.954580 0.91530
0.6 0.852891 0.816236 0.78076
0.7 0.721143 0.688636 0.65730
0.8 0.599651 0.571554 0.54458
0.9 0.488251 0.464732 0.44225
1.0 0.193488 0.183940 0.17464
1.1 0.000000 0.000000 0.00000
1.2 0.000000 0.000000 0.00000
Example 2. Prescribed wall heat flux. The initial and
boundary conditions for this case are given by

hðg; 0Þ ¼ 0;
ohðg; 0Þ

on
¼ 0 ð27Þ

Qð0; nÞ ¼ 1; Qðg!1; nÞ ¼ 0; Qðg; 0Þ ¼ 0 ð28Þ

The analytical solution [1] of this example is expressed
as

hðg; nÞ ¼ a
C

e�
e

2g e�nI0 1� e2

4

� �
ðn2 � s2Þ

� 	1
2

( )(

þ
Z n

g
e�sI0 1� e2

4

� �
ðs2 � g2Þ

� 	1
2

( )
ds

)
Uðn� gÞ

� a
C

e e�g

Z 1

g
e�

e
2fI0 1� e2

4

� �
ðn2 � f2Þ

� 	1
2

( )
Uðn� fÞdf

(

þ
Z 1

g
e�

e
2f

Z n

0

e�fI0 1� e2

4

� �
ðs2 � f2Þ

� 	1
2

( )
Uðs� fÞdsdf

)

ð29Þ

The boundary condition for the Laplace transform of
the dimensionless temperature at surface g = 0 can be
obtained

d�h
dg
ð0; sÞ ¼ � sþ 2

s
ð30Þ
from a prescribed wall heat flux

Analytic solution Eq. (29)

e = �0.1 e = 0.0 e = 0.1

7 1.471626 1.446491 1.421626
9 1.277603 1.252940 1.228560
1 1.095592 1.072261 1.049248
2 0.925641 0.904386 0.883482
9 0.310942 0.303265 0.295778
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000

9 1.863574 1.813100 1.763574
6 1.668799 1.618795 1.569761
6 1.484523 1.435864 1.388219
2 1.310799 1.264251 1.218775
3 1.147639 1.103865 1.061217
4 0.995021 0.954580 0.915306
4 0.852886 0.816236 0.780768
3 0.721138 0.688636 0.657304
3 0.599648 0.571554 0.544584
4 0.488241 0.464732 0.442255
8 0.193370 0.183939 0.174969
0 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000



Fig. 3. The influence of the surface curvature of a solid body on
hyperbolic heat conduction problem with a prescribed wall heat flux by
Dg = 0.025 at t = 0.5, t = 1.0, t = 1.5 and t = 2.0.

Fig. 4. The effect of the surface curvature of a finite slab body on
hyperbolic heat conduction problem by Dg = 0.01 at t = 0.2, t = 0.5,
t = 1.2 and t = 1.5.

Fig. 5. The influence of the surface curvature of a solid body on
hyperbolic heat conduction problem with a prescribed surface radiation by
Dg = 0.015, Er = 0.1, Er = 1.0 and Er = 10 at t = 0.5 and t = 1.0.
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And the discretized form is represented as

ðs2 þ 2sÞ
1
2W ðz1Þ

sinh ðs2 þ 2sÞ
1
2Dx1

h i � cosh½ðs2 þ 2sÞ
1
2Dx1��h1 þ �h2

n o

¼ � sþ 2

s
ð31Þ

Table 2 shows the comparison of the present method solu-
tions by Dg = 0.025 and analytical solutions [1] resulting
from a prescribed wall heat flux problem at t = 0.5 and
t = 1.0. It is observed that the present method solutions
well agree with the analytical solutions.

Fig. 3 represents the influence of the surface curvature of
a solid body on hyperbolic heat conduction problem with a
prescribed wall heat flux by Dg = 0.025 at t = 0.5, t = 1.0,
t = 1.5, and t = 2.0. It can be seen that the present method
solutions do not exhibit numerical oscillations at the wave
front.

Example 3. Prescribed in a finite slab. The initial and
boundary conditions for this case are given by

hðg; 0Þ ¼ 0;
oh
on
ðg; 0Þ ¼ 0 ð32Þ

hð0; nÞ ¼ 1;
oh
og
ð1; nÞ ¼ 0 ð33Þ

Fig. 4 illustrates the effect of the surface curvature
of a finite slab body on hyperbolic heat conduction
problem by Dg = 0.01 at t = 0.2, t = 0.5, t = 1.2 and
t = 1.5.

Example 4. Prescribed surface radiation. The initial and
boundary conditions for this case are given by
hðg; 0Þ ¼ 0;
ohðg; 0Þ

on
¼ 0 ð34Þ

Qð0; nÞ ¼ �Erh
4 þ 1; Qðg!1; nÞ ¼ 0; Qðg; 0Þ ¼ 0;

where Er ¼
asra4f 3

r

k4c4
ð35Þ

The boundary condition is linearized by the Taylor’s series
approximation and the Laplace transform of the dimen-
sionless temperature at surface g = 0 can be obtained

d�h
dg
ð0; sÞ ¼ �ðsþ 2Þ �Er 4h

_
3�h� 3h

_
4

s

 !
þ 1

s

" #
ð36Þ

where h
_

is the previously calculated surface temperature.



T.-M. Chen / International Journal of Heat and Mass Transfer 50 (2007) 4424–4429 4429
And the discretized form is represented as

ðs2 þ 2sÞ
1
2W ðz1Þ

sinh ðs2 þ 2sÞ
1
2Dx1

h i � cosh ðs2 þ 2sÞ
1
2Dx1

h i
�h1 þ �h2

n o

¼ ðsþ 2Þ �Er 4h
_

3�h� 3h
_

4

s

 !
þ 1

s

" #
ð37Þ

Fig. 5 shows the influence of the surface curvature of a
solid body on hyperbolic heat conduction problem with a
prescribed surface radiation by Dg = 0.015, Er = 0.1,
Er = 1.0, and Er = 10 at t = 0.5 and t = 1.0.
5. Conclusions

The new hybrid has shown success in solving the hyper-
bolic heat conduction problem with a conservation term.
To illustrate the accuracy and efficiency of the new method,
four different examples have been analyzed. It is found
from these examples that the present method is in good
agreement in the analytical solutions [1] and does not exhi-
bit numerical oscillations at the wave front. And the influ-
ence of surface curvature of a solid surface with hyperbolic
heat conduction is also shown in Figs. 2–5. These results
represent how the surface temperature is modified by the
surface curvature during the short period when the non-
Fourier effect is significant. The curvature will increase or
decrease the temperature of the wave front, depending on
whether the surface is concave or convex.
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